
The Secret to 

Great Developer Experience 

is Killer Content
Yu Liu

Apache Pulsar PMC Member

Oct 28, 2023



Self intro

2



Why should you attend this sharing?

3

• Shape system thinking • Reuse efficient solutions



Agenda

1. What is DX (Developer Experience)?

2. Why Does DX Matter?

3. How to Design DX?

4. How to Evaluate DX?

5. Thoughts



1. What is DX?



Comparison
Field UX DX

Audience End users Developers

Object Consumer goods

e.g.,

• iPhone

Software products

e.g.,

• API (mostly used)

• SDK

• Library

• Framework

Goal Use products

e.g., use apps

Create software products

e.g., create apps

6



2. Why Does DX Matter?



Business to Business (B2B) Business to Developer (B2D)

Developers (Devs)CXOs

Business model

Decision makers

8

Developers tries, business buys



Developers are rockstars of API economy

Source: DXHEROES 9



3. How to Design DX?



3.1 Issues



Issues from API content consumers
Obstacles to consuming APIs

Source: 2022 State of the API Report

12



Issues from API content producers

Customers weren't 
technical enough.

We just couldn't get 
them to understand 
our APIs.

13



Pulsar API Reference

14



Context gap
API content producers API content consumers

15



3.2 Design Thinking



What is context?

17

All info that strengthens users'

comprehension and prevents

miscommunication, e.g.,

• High-level product info

• Hidden considerations

• Environment when using

products



Content often fails to tell context
• Good at writing "How" • But fail to consider

"Who/What/Why/When/How/How much"

o Who cares about putting🐘 into🧊?

o Who put?

o Why put?

o Which🧊?

o When put?

o How much does put cost?

18



How to create context?

Building comprehensive context requires writers to understand

Industry
trends

Product
stories

Technical
aspects

Deverloper
psychology

DX

19



3.3 Design Process



Overall steps

Understand
developers

Map out
deverloper
journey

Create content
for journey

21



3.3.1 Understand Developers



Developer decision-making unit 
• Context (Who)

23

Roles Job titles What will they do? Content needs Content deliverables

Initiators • Developers (coders)

• DevOps

1. Begins the process by raising awareness 

internally, e.g., a developer who found your 

product via a Google search to an internal 

purchasing.

2. Use and interact with your product.

• Functionalities that answer 

specific needs

• Customizations and 

customer-integration

• Level and quality of technical 

support

• Internal willingness to 

embrace

• Quick start

• Playground / Free trial

• Code samples / Tutorials

• Use cases / Blogs

• Trainings / Best practices

• Knowledge base / Forums

• Community / Events

• Newsletters / Weekly reports

Influencers • PoC / solution engineers

• Customer support

• Developer evangelists

1. Try your product firsthand and provide input.

2. Influence the overall decision though they do

not have explicit decision-making authorities.

Decision-

makers

• CTOs

• Architects

• Tech leads

• Product managers

1. Evaluate the technical aspects, such as 

compatibility with existing resources and the 

fit with the company's technical strategy, 

security, reliability, and so on.

• How it compares to other 

competitive choices in the 

market

• Credibility & stability of the 

product & vendor

• Competitor comparisons

• Success stories

• Whitepapers

• Release notes

• Roadmaps

Budget 

holders

• CXOs 1. Evaluate the commercial aspects including 

pricing, business model, and ROI and gives 

approval to make the purchase.

• Overall ROI cases

• Contractual terms & 

conditions

• Reputations

• Pricing info

• Terms of use

• Usage policies

• PR blogs



Developer mindset

Commonalities in characteristics

ü Like facts not 
marketing

ü Main motivator:
I made it!

ü Enjoy laziness

24



Developer mindset

Commonalities in learning

ü Refer to docs when
they have problems

ü Self study with code
samples

ü Kinesthetic learners

25



Developer archetype
•Who is reading your content?

26

Systematic Opportunistic Pragmatic 

Summary

✅ Gather needed info and then coding.

Get a deep understanding of technology 
and read docs before using APIs.

✅ Gather needed info in parallel to 
coding. 

Solve problems and more willing to 
experiment with APIs without consulting 
docs.

✅ Falls in-between systematic and
opportunistic.

Use docs alongside exploration.

Learning 

habits

1) Review concepts, architecture, and
features to understand the system and
follow proposed suggestions closely.

2) Prepare dev environments. 

3) Start tasks.

1) Search info in a very coarse-grained 
manner.
(e.g., search for a specific piece of info 
and scroll briefly through some docs).

2) Check available solutions and tools.

3) Start tasks.

1) Learn just enough to start a task.

2) Refer to docs and other info
resources to solve problems as 
they encounter them.



Developer archetype
• Systematic

27

Summary Get a deep understanding of technology and read docs before using APIs.

Behavior

1. Gather needed info and then coding. Take some time to explore APIs and read docs and 
examples carefully.

• Review concepts and architecture docs to understand the system as a whole. 
• Study the individual programming features to understand how pieces of the system work.
• Follow proposed process and suggestions closely.
• Form hypotheses about possible solutions, 

clarify terms they do not fully understand.
• Notice docs that are not directly relevant to current task, 

however, still read it as a way to learn APIs.
2. Prepare a dev environment. 
3. Start a task.



Developer archetype
• Opportunistic

28

Summary Solve problems and more willing to experiment with APIs without consulting docs.

Behavior

1. Gather needed info in parallel to coding. 

Search info in a very coarse-grained manner:

• Do not take time to get a general overview of product.

• Search the web to find answers rather than resorting to docs.

• Search for a specific piece of info and 

scroll briefly through some docs.

• Do a lot of searches while developing solutions and 

opening many browser tabs.

2. Check available solutions and tools.

3. Start a task.



Developer archetype
• Pragmatic 

29

Summary
Fall in-between systematic and opportunistic.

Use docs alongside exploration.

Behavior

1. Learn just enough to start a task.

2. Refer to docs and other info resources to solve 
problems as they encounter them.



Implications for content design (all types)

30

Design role-based learning paths



Implications for content design (all types)

31

Provide a transparent navigation 

and a powerful search function



Implications for content design (Systematic)

32

Organize the content 

according to 

API functionality or 

content domain 

rather than info type



Implications for content design (Opportunistic)

33

• Present code examples in small chunks

• Integrate critical pieces of conceptual info into the code examples 

or source code with comments explaining what the code is doing



Implications for content design (Opportunistic)

34

• Provide important info 

redundantly 

• Show domain-related 

background knowledge 

on-demand and 

integrate with the 

description of tasks and 

usage scenarios



Implications for content design (Opportunistic)

35

Signal text-to-code connections 

Use separate columns for code examples that are 

aligned to the columns containing the text blocks 

referring to the code examples, making it easier to 

jump to relevant code examples directly.



3.3.2 Map out

Developer Journey



Map out developer journey

Process: how developers use APIs

37



Analyze needs for each stage
Value Proposition Canvas

38



3.3.3 Create Content for

Developer Journey



1. Discover

2. Evaluate

3. Get started

4. Build

5. Maintain

6. Celebrate

40



Discover + Evaluate

Developers' questions:

• How does this API solve my

specific task?

• Can I trust it?

• Is pricing a barrier?

41



Discover + Evaluate

Obstacles to consuming APIs
Issue

Source: 2022 state of the API report 42



Discover + Evaluate
Landing page

• Product intro • Feature intro • Implementation intro
43



Discover + Evaluate
Q: Why do developers have difficulty in finding APIs?

A: Because your content does not

contain the info that

developers care most about,

i.e., lack of contexts

• What developers' issues do this API fix?

• Why should developers use it?

44

Show benefits, not features



Discover + Evaluate
Content issues

• Focus most on the technical aspects (How)

• Not enough on the product's capabilities (What, Why)

• Business is always under-documented (What, Why)

Reality

Expectation

TechnologyProduct

BusinessBusiness

Product

Technology

• What does it offer?

• What capabilities?

• What use cases 
does it cater to?

• How to call an API?

• How to implement it?

• API specs and paras

• Business rules

• Pricing info

• Usage policy (SLA, security, legal, privacy, partner...)

Content solutions:

focus more on these

45

How deverlopers evaluate

APIs before using them



Discover + Evaluate

An easier way to develop!

🔵 Keep messaging developer-friendly.

q Developers don't want to be marketed to.

q Messaging needs to be practical and speak to

developers' needs.

q Developers want to understand very quickly if an API

is for them.

Ineffective in enticing developers because

it fails to answer many questions and

brings up more questions🤔

🔵 Messaging should help developers decipher questions.

q What does API do?

q Why should a developer use it?

q What advantages does it have over competitive offers?

q How does it make a developer's life easier or better?

It is different than messaging to consumers or businesses.

• What type of development is easier? 

• Define easier? 

• What part of the development process is 
easier, all of it? 

• Why is it easier?

Solution 1: developer messaging (Product "What")

46



Discover + Evaluate
Solution 1: developer messaging (Product "What")

💡Best practice

✅ Refrain from using superlatives around benefits. 

✅ Messaging: 80% features + 20% benefits.

✅ Use "you" rather than "we".

Developers don't care how good you say you are. They care about what you can do for them.

• "We are trustworthy", "We have the best API", "We deliver..."❌

• "You will be able to do xxx with our xxx API"☑

✅ Show your unique selling point (USP).

If product space is commoditized, try to differentiate on the service that is wrapped around your API.

e.g., great DX, comprehensive docs, timely technical support, or marquee customers. 47



Discover + Evaluate
Example: developer messaging (Product "What")

Twillo Marvel

48



Discover + Evaluate

q Developers care about use cases, not the product itself.

Example

• Feature: Payment API

• Use case: collect money easily and securely

q Pre-analyze all for developers in advance.

q Benefits of use cases

• Show business value directly

Solution 2: use case (Product "Why")

Developers'

use cases
API capabilities

Understand

Developers'
problems

Business
rules

Industry
trends

Product
aspects

Map

e.g., business models of 

apps created using the API

e.g., API domain model, 

language, flow, process

• Extend developers' imaginations • Unlock developers' productivity
49



Discover + Evaluate
Example: solutions + use cases (Product "Why")

Twillo

50



Discover + Evaluate

Slack

51

Example: use cases tutorials (Product "Why")



Discover + Evaluate
Summary

Best practice

Dos

• Ignite developers' imaginations to create 

and find commercial success.

• Focus on real-world problem-solving, not 

product promises.

Don'ts

• Outrageous marketing pitch.

• Exhaustive technical details.
52



1. Discover

2. Evaluate

3. Get started

4. Build

5. Maintain

6. Celebrate
53



Get started

Developers' questions:

• Where do I start?

• Does it provide fast try-out and

test options?

• Can I get "Hello World" in 3

minutes?

54



Get started
Issues

• Developers need to prepare

test environments and materials

• Static learning

Struggle to keep concentration

55



Get started
UX in games: satisfying

We like playing games because experiencing the 

flow of focus and stimuli creates a pleasant feeling.

Flow trigger

• Challenge–skill balance

• Clear goals & immediate feedback

• Concentration focused on one thing only

• Learn by doing

Content solutions - design context "Where"

• Find developers' flow status

• Create an interactive learning environment

56



Get started
Example

2⃣ Live code editor

1⃣ 3-column layout

3⃣ Multiple framework

or language selectors

1⃣ Interactive learning environment with sandbox

2⃣ Side-by-side code examples

with color highlighted
57

Stripe

2⃣ Progressive disclosure info

with comprehensive contexts

Frictionless

onboarding

experience



Get started
Tip

Many sites ask

How about asking:

• "Are you considering this API?"

• "Are you starting creating an app using this API?"

58



Get started
Summary

Best practice

Dos

• Get developers to "Hello World" as soon

as possible with minimum steps and effort.

• Provide a sandbox environment to

"kick the tire".

Don'ts

• Lengthy onboarding process with paid test accounts.

• Steep learning curve.
59



1. Discover

2. Evaluate

3. Get started

4. Build

5. Maintain

6. Celebrate
60



Build + Maintain

Developers' questions:

• How to do X with Y?

• Is it easy to keep running?

• Is the support reliable?

61



Build + Maintain
Content issues

Lack usage details ("What, When, How")

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

Reference

Tutorial

Concept

Sample

Landing page

Integration

Where developers spend their time

Source: 2019 API observation study

62

Pulsar API Reference



Build + Maintain
Issues – lack context "What, When, How"

2⃣ Lacks following contexts:

• Why does the number need to be so large?

• Can it be zero or negative?

• Does it need to be unique? If yes, how do

developers verify?

• Is it required or optional? If required, does it

have a default value if is not specified? If yes,

which value? If no, does it return an error?

Which error code?

3⃣ Lacks context "How"

No code examples

1⃣ Lacks context "What"

What is it? Need to explain items that look "obvious".

Programming is nothing if not uncertainty.

63



Build + Maintain
Not thinking like a translatorSolution: thinking like a developer

Understand what's important to developers,

anticipate their questions, and add those contexts.

1. Copy and paste sample
codes. The immediate 
goal is a get a clean 
compile.

2. Start tweaking 
parameters trying to 
understand the nuances. 

3. Look at the larger 
picture and make calls 
from it, or have it accept 
calls. 

Example

Process of playing with an API call

64



Build + Maintain
Example

1⃣ Simple description

Concise "What"

2⃣ Usage explanations

Detailed "When"

3⃣ Complete clarifications

Rigorous "What"

4⃣ Code examples

Clear "How"

65

Stripe



Build + Maintain
Summary

Best practice

Dos

• Provide specialized references,

tutorials, and guides with 

comprehensive contexts and in-

depth explanations.

Don'ts

• Incomplete and inaccurate

content.
66



1. Discover

2. Evaluate

3. Get started

4. Build

5. Maintain

6. Celebrate
67



Celebrate

68

Developers' questions:

• How to promote it?

• Does anyone care about my work?

• How can I get effective feedback?



Celebrate
Provide

solutions

Share 
knowledge

Provide
feedback

Build
connections

Contribute
back

Generate
resources

Build a place to exchange and generate context

69



Celebrate
Example

Spotify developer community

70



Celebrate
Summary

Best practice

Dos

• Provide a centralized place to build

connections between developers and encourage

them to exchange info and contexts.

Don'ts
• No place to showcase.

• No credit on contributions.
71



Developer Learning Journey
Summary

⭐ means MVD (minimum viable deliverables)

72



Content strategy comparison
Design content for developers (OS vs. Commercial)

73

Content strategy OS projects Commercial products

Target user Entry level

• Basic

• Intermediate

Advanced level

Content goal Address access path for different skill levels Address learning/knowledge gaps

Content positioning Comprehensive references Up-level skills

Content focus Basics

• Core fundamentals

• How-to guides

• References

Value-add content with detailed contexts (5W2H)

• Use case tutorials

• Case studies

• Code examples

• Deep dive blogs

• Specialized trainings

• Video courses

Content quality Good enough Production quality



4. How to Evaluate DX?



Evaluate DX

75

UX Research Method Landscape Evaluate both sides

Content
50%

Product
50%

Shared OKRs with both teams



Evaluate DX

76

Sometimes, UX

≠ spend less

time and effort

to finish tasks



Evaluate DX

77

Take doc website as an example



Evaluate DX

78

Qualitative + Quantitative = Sweet Success

✅ Reveal truth ✅ Get honest opinion ✅ Understand user feedback 



5. Thoughts



Thoughts
AI is changing the way of producing and consuming next-generation API content.

How to level up DX with AI?

80



Thoughts
✅ Suggestion 1: Grow your mindset + Polish your creativity

AI won't take your job if you always think outside the box

Instead, we should

think developers as
81

Developers were stereotyped as 

special nighttime dungeons-and-

dragons playing populous who feed 

on beer and hackathons.

Developers are pioneers who are 

- Looking for opportunities and ways to 

interact with business.

- Building new bridges for technology 

and business to adapt and grow.

Some content is a XXXL t-shirt —

everyone can wear it but not 

comfortable with it. 



Thoughts
✅ Suggestion 2: build more connections and contexts

AI can not do the full job of writers because 

• AI produces content based on existing content.

• So much of what writers do isn't writing,

it's relationship building:

o The ability to empathize with users at every level.

o The ability to build emotional intimacy and gain trust.

o The ability to see the content as an entire product, not just 

discrete words, sentences, and topics.

82



Takeaways

83

✅ Design DX

1⃣ Understand developers

• DDMU (Developer Decision-Making Unit): Initiators, Influencers, Decision-makers, Budget holders

• Archetypes: Systematic, Opportunistic, Pragmatic 

2⃣ Map out developer journey (6 stages)

• ▶ Discover ▶ Evaluate ▶ Get started ▶ Build ▶ Maintain ▶ Celebrate

3⃣ Create content for developer journey

• Choose deliverables and prioritize tasks using the Value Proposition Canvas (Jobs, Gains, Pains)

• Provide MVD: use case tutorials, get started, and references

• Differentiate content strategies for open-source projects and commercial products

✅ Evaluate DX

• UX Research Method Landscape: qualitative + quantitative, analyze attitudes + observe behaviors

• DQTI (Develop Quality Technical Information): easy to understand, use, find



Use case tutorial

Destination

Get started

Navigation

Reference

Car

Developers start a happy journey🎉

84



References

85

✅ Books

• Developer Relations: How to Build and Grow a Successful Developer Program

• Information Architecture for the World Wide Web

• The Elements of User Experience: User-Centered Design for the Web

• IBM Design Thinking

✅ Yu's talks (videos and slides are available)

• Cracking the Code of Information Architecture

• Inside Apache Pulsar's Content Strategy

• Success Beyond Code: Optimizing Developer Experience Through PR Titles

• Code the Docs: Continuous Integration for Docs

• Growing a Company to be a Top OS Contributor

• Building a Welcoming Community

https://www.amazon.com/Developer-Relations-Build-Successful-Program/dp/1484271637
https://www.amazon.com/Information-Architecture-World-Wide-Web/dp/0596527349
https://www.amazon.com/Elements-User-Experience-User-Centered-Design/dp/0735712026
https://www.ibm.com/design/thinking/
https://pan.baidu.com/s/1g_FOV9mlHYiHfO2CJ_zaPw?pwd=e5t6


WeChat Official Account: 开源社KAIYUANSHE
WeChat Channels: 开源社KAIYUANSHE
Weibo: 开源社
Bilibili: 开源社KAIYUANSHE

Jianshu: 开源社
TouTiao: 开源社
Facebook: KaiyuansheChina
Twitter: 开源社KAIYUANSHE

Scan to Follow 
KAIYUANSHE 

WeChat Account

THANK YOU
QUESTIONS?

Scan to Contact with 
COSCon Speakers


